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Abstract. We describe how starting from a type of nearest-neighbour localized wavefunction
cluster expansion one may conveniently build up a locally correlated orthonormal ‘many-body’
basis for a linear-chain system. The initial correlated cluster expansion approximant to the
ground state plays the role of a ‘vacuum’ while the other members of the basis are single or
multiple excitations above this. The scheme is illustrated for the case of two states per site, in
application to the linear-chain Heisenberg model.

1. Introduction

Wavefunction cluster expansions have long been recognized as a general ‘size consistent’
means by which to introduce many-body correlation effects (see, e.g., [1–5]). Development
of cluster expansions within a real-space localized viewpoint is natural in dealing with strong
correlation and should relate directly to classical chemical bonding ideas. But there are
several conceptually different manners of implementation of a localized-viewpoint cluster
expansion, even aside from different sorts of schemes for the evaluation of matrix elements,
and even in application to so simple a system as the antiferromagnetically-signed spin-1

2
Heisenberg model. As illustrated for this last model there are three general cluster-expansion
developments:

(a) one that we view as focusing on the expansion of the wave-operator to be applied to a
reference state [6–8] (the Neél state for the Heisenberg-model example);

(b) one that focuses on an expansion of the configuration coefficients [9–11] (involving a
‘correlative’ factorization of these coefficients); and

(c) a resonating valence-bond (VB) cluster expansion [11, 12] focusing on electron singlet-
spin pairing patterns.

Much the same categorization of methods applies to other models as well, and indeed
such (e.g. fermionic) models have more frequently been the focus of consideration.
The computational techniques are understood conceptually since each type of approach
relates directly to (what are better known as) non-trivial statistical-mechanical combinatoric
problems—involving:

(a′) novel graphico-combinatoric problems of a statistical-mechanical flavour for the wave-
operator expansion method;

(b′) Ising (or lattice gas) model problems for the configuration-coefficient expansion; and
(c′) dimer-covering related problems for the resonatingVB ansatz.
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Therefore such schemes are treated without any matrix-element approximation most readily
for quasi-one-dimensional (or polymer) systems, hence the transfer-matrix scheme then is
uniformly applicable, as ‘emphasized’ in the present context in [13], though the general
technique in application to statistical mechanical problems dates back to the 1940s (see,
e.g., [14]). Again, successful utilization of these wavefunction might be made using other
(often non-variational) approaches, such as coupled-cluster [7] or Monte Carlo [10, 11]
methods.

Here we investigate a novel feature of the Ising-model related configuration-coefficient
cluster expansion. Namely, within the transfer-matrix framework, we show how from such
a low-order (nearest-neighbour) cluster expansion for the ground state one may build up a
set of excitations and multiple excitations all of which turn out to be orthonormal and to
form a new (still largely ‘local’) basis, which in some cases is essentially complete. This
approach differs from much previous work usually focusing solely on the ground state.
With the proposed cluster-expansion basis one may reformulate the Hamiltonian in terms
of it and then go on to an approximate solution (e.g., many-body perturbation expansion
or perhaps a second cluster expansion), noting that just the single ‘vacuum’ basis state is
already the result of the initial (correlated) cluster expansion. We illustrate the basis with
application to the linear-chain spin-1

2 antiferromagnetically-signed Heisenberg model.
Despite such a correlated picture it is cautioned that there remains the question of

the adequacy of the ‘vacuum’ and single-excitation above it as a description of the actual
ground state and low-lying excitations above it—in particular, although the ‘vacuum’ is
variationally optimized, it may in some cases fall into a different ‘universality class’ than
the actual ground state.

2. Background

First the background framework and notation should be set. We presume a linear chain of
sites, i = 1 → N , each of which may have complex internal structure as encoded in their
orthogonalsite states|ir〉, r ranging. They combine intosystemproduct-like states

|r(N → 1)〉 ≡ |rN , . . . , r2, r1〉 (2.1)

that form an orthonormal basis for the system space

〈r(N → 1)|s(N → 1)〉 = δ
r,s
N→1 ≡

N∏
i=1

δ(ri, si) . (2.2)

The states of (2.1) may be conventional Kronecker products of site states, but they could
be antisymmetrized products, or the correlated cluster-expansion states of section 6. All we
require is (2.2).

There is a natural set of generators of operators on the system space. These are the
single-site operators

Xi(r, s) ≡
ri=r∑

r(N→1)

si=s∑
s(N→1)

δ
r,s
N→i+1δ

r,s
i−1→1|r(N → 1)〉〈s(N → 1)| (2.3)

where the summations are restricted to fixedri and si . These operators act on the basis
vectors thus

Xi(t, s)|r(N → 1)〉 = δ(ri, s)|r ′(N → 1)〉 (2.4)
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where|r ′(N → 1)〉 is the same as|r(N → 1)〉 except (perhaps) on sitei which is in site
stater ′

i ≡ t . Further, these operators satisfy commutation relations

[Xi(r, s), Xj (t, u)] = δij {δ(s, t)Xi(r, u) − δ(u, r)Xi(t, s)} (2.5)

and any other operators on the system may be generated from them. Typical operators
of interest will be expressed in terms of summations (oni) of products over only a few
Xi(r, s). Here we assume all the sites are of the same type, with the site states on different
sites having the same numberM, and we assume these site states on different sites are
translatable one into another. That is, each site has the same labelsr.

3. Cluster expansion

The nearest-neighbour cluster-expanded wavefunctions are to be defined in terms of
(variational) parameters each associated with neighbour pairs of sites, or with single sites at
the chain ends (N and 1). The site-pair parameters are viewed as elements(r|xi+1i |s) of a
matrix xi+1i , i = N −1 → 1, while the end-site parameters(r|xi) are viewed as components
of vectors|xi), i = N or 1. Then the cluster-expanded basis states are introduced as

|8[x(N → 1)]〉 =
∑

r(N→1)

(xN |rN)

N−1→1∏
i

(ri+1|xi+1i |ri)(r1|x1)|r(N → 1)〉 . (3.1)

The overlap matrix element between two such wavefunctions (with possibly differentx-
andy-sets of parameters) is

〈8[x(N → 1)]|8[y(N → 1)]〉 = (x∗
N · yN |

N−1→1∏
i

(x∗
i+1i · yi+1i )|x∗

1 · y1) (3.2)

where we have recalled the orthonormality of (2.2) and have utilized the so-called
‘Hadamard’ product notation: a vector|x · y) is the Hadamard product of|x) and |y),
or a matrixx · y is the Hadamard product ofx andy, when

(r|x · y) ≡ (r|x)(r|y)

(r|x · y|s) ≡ (r|x|s)(r|y|s) .
(3.3)

Thus withM site states per site, all has been reduced in (3.2) to the manipulation ofM ×M

matrices

Ti+1i ≡ x∗
i+1i · yi+1i (3.4)

called transfermatrices.
Local matrix elements may be dealt with upon making a few additional refinements. For

a one-site matrix element overXi(s, s
′) we introduce aconnectionmatrix Ci+1→i−1(s, s

′)
with elements

(r|Ci+1→i−1(s, s
′)|t) = (r|x∗

i+1i |s)(s|x∗
ii−1|t)(r|yi+1i |s ′)(s ′|yii−1|t) . (3.5)

Of course, one may be interested in a suitable linear combinationHi of Xi(s, s
′)—that

is, Hi involves a summation over the site-state indicess, s ′. Therefore one may introduce
the same linear combinationCi+1→i−1 of the Ci+1→i−1(s; s ′). Now, making an expansion
parallelling that for the overlap, one obtains

〈8[x(N → 1)]|Hi |8[y(N → 1)]〉
= (x∗

N · yN |TNN−1 · · · Ti+3 i+2Ci+1→i−1Ti−1 i−2 · · · T2 1|x∗
1 · y1) . (3.6)

So all is reduced toM by M matrices.
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For a two-site matrix element overXi+1(s, s
′)Xi(t, t

′) one introduces a (‘longer’)
connection matrixCi+2→i−1(s, t; s ′, t ′) with elements

(r|Ci+2→i−1(s, t; s ′, t ′)|u) = (r|x∗
i+2 i+1|s)(s|x∗

i+1 i |t)(t |x∗
i i−1|u)

×(r|yi+2 i+1|s ′)(s ′|yi+1 i |t ′)(t ′|yi i−1|u) . (3.7)

Again, for linear combinationsHi+1 i of two-site operators, corresponding linear-
combination connection matricesCi+2→i−1 may be introduced, and an expression obtained
like (3.6) but now with the matrixCi+2→i−1 while Ti+2 i+1 is missing.

4. The ground state

Frequently, the ground state (away from the ends) approaches translational invariance (as
N → ∞), in which case this ground state might be approximated by a single cluster-
expanded wavefunction with a single set of (variational) pair parametersxi+1 i . Such a state
might be denoted by9(x1, xN) in place of8[x(N → 1)]. Also, the transfer matrices all
become identical so that their site labels are dropped. Solution of the eigenproblem

T|λ) = λ|λ) (4.1)

allows a useful analysis of the overlap

〈9(x1, xN)|9(x1, xN)〉 =
∑

λ

(x∗
N · xN |λ)λN−1(λ|x∗

1 · x1) (4.2)

assuming that the eigenvectorsλ are normalized andT is symmetric. (IfT is not symmetric,
then an analogous result follows when one pays attention to distinguish left and right
eigenvectors, and biorthonormalizes them.) NowT is seen from (3.4) to have non-negative
elements, hence the Frobenius–Perron theorem [15] implies that there is a maximum-
magnitude eigenvalue3 which is real and positive, and whose eigenvector|3) has all
components(r|3) of the same phase, so that one may choose all(r|3) positive. Further,
if a sufficient set of elements of (our often symmetric)T are non-zero, then|3) is non-
degenerate, not only in value but magnitude as well, so that for long chains this eigenvalue
dominates over the others in both the overlap (4.2) and the analogously developed formula
for matrix elements as (3.6).

But an analogous formula can be obtained exactly without resort toN → ∞ asymptotics
if we choose the end parametersx1 andxN judiciously

(r|x1) = (r|xN) = (r|3)1/2 . (4.3)

Then |x∗
i · xi) = |3), i = N and 1, so that (now also dropping thex1, xN indices on9)

〈9|9〉 = 3N−1 . (4.4)

Likewise

〈Hi+1 i〉 ≡ 〈9|Hi+1 i |9〉
〈9|9〉 = (3|C|3)

33
(4.5)

at least so long as neitheri nor i + 1 are end sites.
The (r|x|s) may be treated as variational parameters. The minimization of the

Hamiltonian expectation with respect to these(r|x|s) is a non-linear problem but is
numerically feasible for modestM, this involving just repeated manipulations ofM × M

matricesT.
If the variational parameters(r|xi+1 i |s) do not well approach translationally fixed values,

they should still often exhibit some small period, sayp. Then ap-fold product of thep

different asymptotic transfer matrices, enables a somewhat similar treatment to be made,
though now with up to a power ofp times as many variational parameters.
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5. Bond excitations

Now, even for somewhat more general cluster expansions results analogous to those in
the preceding section (at least in an asymptotic sense) can be obtained and even extended
[16] to define and deal with ‘single’ local excitations. But the present cluster expansion
(at least sometimes) allows much more: a ‘complete’ set of ‘multiple’ excitations may be
developed and a new representation obtained. To ultimately accomplish this we seekM

different pair-excitation matricesxξ , first with ξ = 0 and |3) ≡ |0) corresponding to the
ground-state case of the preceding section and second with

(xξ∗ · xζ )|0) = δξζ |0) . (5.1)

Here it is understood that the introduction of a factor3ξ on the right of (5.1) would not
effectively relax these conditions, since if satisfied with this factor, then rescaling of the
so-foundx3 by 3

−1/2
ξ would yield the result as written. The Hadamard products on the left

of (5.1) are evidently transfer matricesT(ξ,ζ ), with T(0,0) = T andx0 = x of the preceding
section rescaled so that3 = 1. The matter of generation ofcanonical bond excitations
satisfying (5.1) is delayed until section 7.

AssumingM matricesxξ satisfying (5.1), we define many-body cluster-expanded basis
states thus

|9[ξ(N − 1 → 1]〉 ≡
∑

r(N→1)

(0|rN)1/2
N−1∏
i=1

(ri+1|xξi |ri)(r1|0)1/2|r(N → 1)〉 (5.2)

where, of course,ξ(N − 1 → 1) ≡ ξN−1, . . . , ξ2, ξ1. That is, the states are just
|8[x(N → 1)]〉 as in (3.1) but with all the variational parameters chosen in a special
way. The key point is the development of the consequent overlaps in terms of transfer
matricesT(ξ,ζ ), followed by the use of (5.1),

〈9[ξ(N − 1 → 1)]|9[ζ(N − 1 → 1)]〉 = (0|
N−1∏
i=1

T(ξi ,ζi )|0)

≡
N−1∏
i=1

δ(ξi, ζi) ≡ δ
ξζ

N−1→1 . (5.3)

The cluster-expanded basis states are orthonormal, and they are essentially complete. (There
is some sort of minor deficiency in connection with the chain ends—there being justN − 1
bonds on which to make excitations, though there wereN sites.)

6. Cluster-expansion representation

In general, our essentially orthonormal cluster-expansion basis may be used to develop a
new representation. Of key importance, of course, is the representation of the Hamiltonian.

Since the bond excitations are somewhat local, Hamiltonian interactions originally local
in the representation of section 2 remain somewhat so. The neighbour-interaction matrix
elements are

〈9[ξ(N − 1 → 1)]|Hi+1 i |9[ζ(N − 1 → 1)]〉 = δ
ξζ

N−1→i+2δ
ξζ

i−1→1(0|C(ξ,ζ )

i+2→i−1|0) (6.1)

where we have abbreviated two Kronecker delta functions (as in (2.2) or (5.3)), and the
C-matrix here is as described in (3.7) but now for special parameter values, with the
x∗

j+1j = xξ∗
j+1j and theyj+1j = xζ

j+1j . For i or i + 1 at a chain end there would be a
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modification. Notably, if the original interactions extend only overn nearest neighbour
sites, then the new renormalized interactions extend only overn + 1 neighbouring bonds.

To effect the new representation introduce local operators, analogous to the localXi(r, s)

of section 2, thus

Y
ξζ

i =
ξi=ξ∑

ξ(N−1→1)

ζi=ζ∑
ζ(N−1→1)

δ
ξζ

N→i+1δ
ξζ

i−1→1|9[ξ [N − 1 → 1]〉〈9[ζ(N − 1 → 1)| . (6.2)

Evidently, bonds now play the role that sites did in section 2. Presuming the original
Hamiltonian to have just a nearest-neighbour interaction, we have its new representation

H =
∑

i

∑
ξ3ξ2ξ1

∑
ζ3ζ2ζ1

(0|C(ξ,ζ )

4−site|0)Y
ξ3ζ3
i+2 Y

ξ2ζ2
i+1 Y

ξ1ζ1
i (6.3)

where again there would be corrections at the ends of the chain.

7. Satisfaction of canonicalness

The point now is to indicate that at least sometimes it is possible that there areM solutions
xξ to the∼M2 matrix conditions of (5.1), and hence that we have a complete set of bond
excitations. For simplicity consider the common case where thexξ are symmetric and real
(so that there are justM(M + 1)/2 conditions (5.1)). Again, we imagine thatx0 = x for
the ξ = 0 ground state is already available. For theξ 6= ζ case the conditions (5.1) merely
say that the transfer matrix(xξ · xζ ) has |0) as an eigenvector with eigenvalue 0, so that
xξ · xζ is confined to the (M − 1)-dimensional subspace spanned by all the eigenvectors of
T = T0,0 other than|0). Whenξ = ζ evidently |0) still is to be an eigenvector to(xξ · xζ )

but now with eigenvalue unity. Thus

(xξ · xζ ) = δξζ |0)(0| +
6=0∑
µ,ν

|µ)tξζ
µν(ν| . (7.1)

But not all these (M − 1) × (M − 1) matricestξζ can be chosen independently. As a step
toward seeing this more precisely, abbreviate those withζ = 0 (andξ 6= 0) thustξ0 = tξ ,
hence from (7.1) one has

(r|xξ |s) = 1

(r|x|s)
6=0∑
µ,ν

(r|µ)tξµν(ν|s) . (7.2)

But now the remainingtξζ with both subscriptsξ, ζ 6= 0 are to be related via∑ 6=0
µ,ν(r|µ)tξµν(ν|s) ∑6=0

µ,ν(r|µ)tζµν(ν|s)
(r|x|s)2

= δξζ (r|0)(0|s) +
6=0∑
µ,ν

(r|µ)tξζ
µν(ν|s) . (7.3)

Here, we see that the number of scalar equations (7.3), lettingξ, ζ, r, s range and noting
the symmetriesxξ† = xξ , tξ† = tξ , tξζ† = tξζ = tζ ξ , is

#eq = 1
2(M − 1)M 1

2M(M + 1) . (7.4)

We also see that the number of different scalar elements in the matricestξ , tξζ is

#t(M) = 1
2(M − 1)M

[
(M − 1) + 1

2(M − 1)M
]
. (7.5)

Here, the number #eq(M) of conditions to be satisfied exceeds the number #t(M) of
parameters byM(M − 1)/2, so one might ordinarily expect that these conditions cannot
always be met.
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However, for many interesting models a symmetry is manifested which effectively
reduces the number of conditions. For instance, forM = 2 the spin-12 Heisenberg model
(in the absence of a magnetic field) there is a symmetry interchanging the site states labelled
by spin-upα and spin-downβ, so that ther = s = α and r = s = β conditions of (7.3)
become identical, hence all can be satisfied, as illustrated explicitly in section 8. ForM = 3,
the spin-1 Heisenberg model and thetJ -model each have site states one might label+, 0, −
with a symmetry interchanging+ and−. For M = 4 the spin-32 Heisenberg model and the
Hubbard model also have site states exhibiting an interchange symmetry under spin-flip.
But regardless of whether allM2 of the conditions of (5.1) can be met we have at hand a
renormalization generally leaving at leastM − 1 lower local states for each bond.

8. Two states per site

The ideas of the preceding sections may be illustrated by their application to the simplest
non-trivial linear-chain case—that withM = 2 states per site. The best known quantum
model forM = 2 is the spin-12 Heisenberg model, as well as various modifications to it. If
we label the site statesr = α, β, then the ground-state (ξ = 0) transfer matrix appears as

T =
(

(α|x|α)2 (α|x|β)2

(β|x|α)2 (β|x|β)2

)
. (8.1)

This form may be used to treat ground states for quite general models—even models
which in some sense have 1< M < 2, as in [17]. But if α and β are equivalent or
‘degenerate’, as now assumed, then it is reasonable to take not only(α|x|β) = (β|x|α) but
also(β|x|β) = (α|x|α). Therefore the maximum-eigenvalue eigenvector toT becomes

|0) = 1√
2

(
1
1

)
(8.2)

independently of the value of(α|x|α) and (α|x|β). Further, because of the chosen
normalization (that the maximum eigenvalue3 of T be 1), only one of the parameters
actually remains independent. That is, we may express this in terms of one (new) parameter
x,

x = 1√
1 + x2

(
x 1
1 x

)
(8.3)

so that the transfer matrixx ·x has3 = 1. For the antiferromagnetically-signed Heisenberg
model one expects|x| < 1.

To obtain a full cluster-expansion representation we develop the canonical excitations
following section 7. Lettingµ be the second (i.e. smaller) eigenvalue toT, the parameters
for the excitationξ = ? are to be given by

(r|x?|s) = (r|µ)t?µµ(µ|s)
(r|x|s) (8.4)

wheret?µµ and a second parametert??µµ are to satisfy the conditions

(r|µ)t?µµ(µ|s)
(r|x|s)2

= (r|0)(0|s) + (r|µ)t??µµ(µ|s) . (8.5)
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But again with the symmetric case this reduces to just two distinct conditions, for
(r, s) = (α, α) and(r, s) = (α, β). Recalling (8.3) these two conditions are{√

x2 + 1

x
t?µµ

1
2

}2

= 1
2 + 1

2 t??µµ{√
x2 + 1 t?µµ

(− 1
2

)}2 = 1
2 + (− 1

2

)
t??µµ

(8.6)

whence we obtain

t?µµ = 2x

x2 + 1
t??µµ = 1 − x2

1 + x2
. (8.7)

Thus

x? = 1√
1 + x2

(
1 −x

−x 1

)
(8.8)

and a cluster-expansion basis as in section 7 has been realized.

9. The linear-chain Heisenberg model

The isotropic spin-12 Heisenberg model for a linear chain is

H0 = 2J
∑

i

si+1 · si (9.1)

where J is the ‘exchange’ parameter andsj is the spin operator for sitej . It is
also the Pauling–Wheland valence-bond model for a conjugated chain (e.g. a polyene or
polyacetylene). For convenience we choose the initial basis as products of site states with
a sign

|σ(N → 1)〉 = ±σ1(1) × σ2(2) × · · · × σN(N) σi = α, β i = 1 → N (9.2)

where the± sign is simply the parity of the number ofβ-spins on odd sites. The advantage
of this choice [18] is that the ground state is ‘nodeless’ on this basis, i.e. the ground-state
configuration–interaction coefficients are then all of the same sign (which is positive, with
our choice of phase).

The ground-state cluster expansion is set up as indicated in section 8, with a variational
parameter and transfer matrix as in (8.3). The connection matrix is conveniently broken
into two parts, the firstCd being that for the ‘diagonal’ part of the interaction

(σ |Cd|τ) = (σ |x|τ)〈σ, τ |2sz
1s

z
2|σ, τ 〉(σ |x|τ) (9.3)

so that

Cd = 1

x2 + 1

(
x2/2 −1/2
−1/2 x2/2

)
. (9.4)

The second partCod for the ‘off-diagonal’ part involves four sites

(ρ|Cod|ω) = −
∑
σσ ′

∑
ττ ′

(ρ|x|σ)(σ |x|τ)(τ |x|ω)

×〈σ, τ |s+
1 s−

2 + s−
1 s+

2 |σ ′, τ ′〉(ρ|x|σ ′)(σ ′|x|τ ′)(τ ′|x|ω) (9.5)

and leads to

Cod = − 2x2

(x2 + 1)3

(
1 1
1 1

)
. (9.6)
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Thus via (4.5) the ground-state energy expectation per site is

ε0 = J (0| [Cd + Cod
] |0) = J

{
x2 − 1

2(x2 + 1)
− 4x2

(x2 + 1)3

}
. (9.7)

This is sufficiently simple that it may be analytically optimized. The expression is cubic in
the (positive) variablez ≡ 1/(x2 + 1), and the derivative of this leads to a quadratic which
leads us back to optimal values

x = {
2
√

7 − 5
}1/2 ≈ +0.539 909 83

ε0/J = − 7
27

{√
7 + 1

2

} ≈ −0.815 565 15.
(9.8)

Indeed, this is just the result of Kasteleyn [9], although here obtained in a somewhat different
manner. Table 1 compares it with a few other results, including the exact solution [19] near
−0.886 28 (which does not, however, always readily extend to other related linear-chain
models). There are a number of other (even variational) results which give more accurate
estimates of the exact result, but not all yield so complete a presentation of the excitation
spectrum as follows with the present approach, which in addition yields a whole new still
local renormalized representation.

Table 1. Ground-state energy estimates per site.

Method Energy References

Néel state −0.5000
Kekülé state −0.7500
Two-site CI-coefficient cluster expansion −0.8156 [9], here
RHF (after Jordan–Wigner transform) −0.8383 [20]
Two-bond resonating-VB cluster expansion −0.8538 [11, 12]
Two-site wave-operator cluster expansion −0.8558 [6, 8]
SCF antiferromagnetic spin-wave −0.8634 [21]
Exact −0.8863 [19]
2nd order Ńeel-state perturbation expansion−1.0000 [22]

10. Renormalized Heisenberg model

The ‘bond’ excitations for the new basis are indicated near the end of section 8. For the
excitation spectrum (and newly represented Hamiltonian) we also need to develop the bond-
excitation labelled connection matrices, as in section 6. For the present case we break the
interactions into two parts, as in (9.3) and (9.5) for the ground state. The first part gives
matrix elements

(σ |C(ξ,ζ )

d |τ) = (σ |xξ |τ)〈σ, τ |2sz
1s

z
2|σ, τ 〉(σ |xζ |τ) (10.1)

so that

Cξ,ζ

d = 1
2xξ · xζ ·

(
1 −1

−1 1

)
. (10.2)

Similarly, the second part leads to

C(ξ(3→1);ζ(3→1))

od = − (
xξ3 · xζ3

) (
0 (α|(xξ2 · xζ2)|β)

(α|(xξ2 · xζ2)|β) 0

) (
xξ1 · xζ1

)
(10.3)
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where a matrixxζ is obtained fromxζ by interchanging its rows. Following the ideas in
section 6, we then find the newly represented Hamiltonian

H0 = J
∑

i

{
1

x2 + 1
1i − 1

(x2 + 1)3
Ai+1∇iAi−1

}
(10.4)

in terms of three types of one-bond operators

1 ≡ 1 − x2

2
(−Y 00 + Y ??) + x(Y 0? + Y ?0)

A ≡ 2x(Y 00 − Y ??) + (1 − x2)(Y 0? + Y ?0) (10.5)

∇ ≡ Y 00 + x2Y ?? − x(Y 0? + Y ?0) .

Again, there are some corrections in the operator representation at the chain ends, but
we neglect these here. It should be emphasized that bond operators for different bonds
commute, even if the bonds are adjacent (and viewed to share a site, in terms of which the
original representation of section 2 was built).

11. Next-nearest-neighbour Heisenberg model

Beyond the nearest-neighbour Heisenberg model which has already been solved exactly
[19], one may apply the current methodology to other models which have not been solved
exactly. Such is the next-nearest-neighbour Heisenberg model

Hγ = 2J
∑

i

(si+1 · si + γ si+1 · si−1) . (11.1)

The results of section 8 still apply, but new connection matrices for the next-nearest-
neighbour interaction need to be constructed, much as done for the nearest-neighbour
interaction in sections 9 and 10. We find the consequent new cluster-expansion
representation to be

Hγ = H0 + γ J
∑

i

{
2

(x2 + 1)2
1i+11i + 1

(x2 + 1)4
Ai+2(R

+
i+1R

−
i + R−

i+1R
+
i )Ai−1

}
(11.2)

where the1 andA operators are as before in (10.5) andR+, R− are a conjugate pair

R+ ≡ x(Y 00 − Y ??) − x2Y 0? + Y ?0

R− ≡ (R+)†
(11.3)

and actually appear in a hidden form in (10.4) sinceR+ + R− = A.
The ground-state expectation per site forHγ is readily obtained from this general

representation, as

εγ = ε0 + γ

{
(x2 − 1)2

2(x2 + 1)2
+ 8x4

(x2 + 1)4

}
. (11.4)

Again this is a function ofz = 1/(1+x2), now quartic in this variable, so that optimization
leads to a cubic polynomial and the result of figure 1. Here too, earlier results [8, 12, 23]
are better, though again we have a new representation (in equation (11.2)).
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Figure 1. Energy (in units ofJ ) per site for the next-nearest Heisenberg Hamiltonian.

12. Discussion

Thus we have proposed a novel type of basis, which although it has the mathematical features
of a simple orthonormal product of site states, also has much of the physical correlation
included. The ground ‘vacuum’ is itself a correlated cluster expansion with (possibly
optimized) variational parameters. The single excitations involve localized (correlated
changes) from the ground ‘vacuum’, and may be chosen such that they do not directly
couple to the ground ‘vacuum’. The multiple excitations appear in some sense product-like
as independent single excitations, retaining mutual orthogonality though as represented in
the original basis they are not simple products. Moreover, we have indicated a scheme
to realize all this for a certain class of linear-chain systems. Even in cases where the
transformed basis states are not complete (i.e. span only a proper subspace) the approach
may offer a useful (approximate) renormalization technique.

The present outline raises several questions. Can the scheme to achieve canonicalness
of bond excitations be made more elegantly constructive? Can the scheme be formulated
without so intimate a connection to the transfer-matrix formulation for treating matrix
elements? Can the scheme be extended to other dimensionalities or types of cluster
expansions?

Another question concerns the degree of completeness of our present basis. Since with
N sites there are onlyN − 1 bonds in an (open) linear chain, there are justMN−1 basis
states of the type in (5.2) while there areMN original basis states in (2.1). This discrepancy
(as it concerns boundary conditions) should be asymptotically negligible in many respects:
the ground-state energy per site should be accurately included to∼ 1/N and the bulk of the
single-excitation eigenspectrum should be similarly accurate. In fact, much is elucidated if
we modify the states of (5.2) thus

|9µ0[ξ(N − 1 → 1)]〉 =
∑

r(n→1)

(µ|rN)

(0|rN)1/2

{
N−1→1∏

i

(ri+1|xξi |ri)

}
(r1|0)1/2|r(n → 1)〉 (12.1)

and also

|90µ[ξ(N − 1 → 1)]〉 =
∑

r(n→1)

(0|rN)

{
N−1→1∏

i

(ri+1|xξi |ri)

}
(µ|r1)

(0|r1)1/2
|(r(N → 1)〉 . (12.2)

For µ 6= 3 one finds that the sets of (12.1) and (12.2) are both orthogonal to that of (5.2).
Further, (12.1) and (12.2) tend to be biorthonormal to one another (forM = 2, or in general
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if there are not too many excitations) so that withM − 1 eigenvaluesµ 6= 3 we seem to
have cluster-expansion basis states for the remnantM −1 MN−1-dimensional space. Matrix
element formulae even follow in much the same manner thoughµ and |µ) replace3 and
|3) in much of the formulation. We do not pursue this here.

There is also a further question of how readily one might make an accurate solution to
the transformed model, as in (6.3) or (10.4). Of course, the whole exercise has been based
upon a simple cluster expansion, foremost for the ground state, but then also for excitations
above it. Thus even the single basis vector9[0, 0, . . . , 0]〉 ≡ |9〉 should hopefully yield
a reasonable ground-state estimate, though in the case of the Heisenberg model in section
9 we found this estimate to be only of rather modest accuracy. Ordinary (non-degenerate)
many-body perturbation theory might be tried. Or a second cluster expansion might be
tried. Indeed, such a next ground-state cluster expansion is considered in a later paper with
application to the Heisenberg model.

Overall the cluster-expansion basis seems novel, possibly opening new paths in treating
quasi-one-dimensional systems.
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